딥마인드, AI와 과학적 발견

A new golden age of discovery
Google DeepMind

딥마인드의 보고서

지난 반세기 동안 과학 인력이 크게 증가하여 미국에서만 7배 이상 증가했지만 , 우리가 따라야 할 사회적 진보는 둔화되었습니다. 예를 들어, 세계 대부분 지역에서 생산성 증가가 지속적으로 둔화 되어 공공 서비스의 질이 저하되고 있습니다. 건강, 환경 등에서 가장 큰 과제를 포착한 2030년 지속 가능한 개발 목표를 향한 진전이 정체 되고 있습니다 .

특히, 오늘날 획기적인 발견을 모색하는 과학자들은 점점 더 규모 와 복잡성 과 관련된 과제에 부딪히게 되는데 , 이는 그들이 습득해야 할 끊임없이 증가하는 문헌 기반에서부터 실행하고자 하는 점점 더 복잡한 실험에 이르기까지 다양합니다. 최신 딥 러닝 방법은 이러한 규모와 복잡성 과제 에 특히 적합하며 , 그렇지 않으면 미래의 과학적 진보에 필요한 시간을 단축할 수 있습니다.

과학 발전의 병목 현상을 해결하는 다섯가지를 이야기한다.

  1. 지식(Knowledge): AI가 문헌 검토를 돕고, 요약을 생성하며, 인터랙티브 과학 논문을 가능하게 함.
  2. 데이터(Data): 대량의 과학 데이터를 추출, 정리, 주석 처리(annotate) 하여 연구 효율성을 증대.
  3. 실험(Experiments): 시뮬레이션을 가속화하고, 비용을 줄이며, 실험 설계를 최적화함.
  4. 모델(Models): 복잡한 시스템(예: 기후 예측, 질병 모델링, 경제 예측)을 더 정확하게 예측.
  5. 해결책(Solutions): 수학, 화학, 공학 분야에서 최적의 해결책을 탐색하는 AI 알고리즘 활용.

기대 되는 측면도 있고 현재도 일부 사례를 찾아볼 수 있는 영역도 있으나, 이러한 변화가 가지는 위험 역시 이야기한다. 그중 공감되는 내용은 인공지능 격차에 관한 부분

  • 창의성(Creativity): AI가 너무 예측 가능한 결과를 생성하여 혁신이 감소할 위험이 있음.
  • 신뢰성(Reliability): AI 모델이 허위 데이터(hallucination) 를 생성할 가능성이 있어 연구 신뢰성 저하 가능성.
  • 형평성(Equity): AI 도구에 대한 접근성이 불균형하여 과학 연구의 디지털 격차가 심화될 우려.
  • 환경 비용(Environmental Costs): AI 모델 훈련에 막대한 연산 자원이 필요하여 탄소 배출 증가 문제가 있음.

코멘트

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다