사전학습 시대의 끝

(당연한 이야기처럼 보이지만) 그는 사전 학습이 AI 발전을 주도했지만, 컴퓨팅의 성장에도 불구하고 데이터 성장의 한계로 인해 궁극적으로 끝날 것이라고 예측했다. 아래는 기계요약

Ilya Sutskever: Sequence to Sequence Learning with Neural Networks at NeurIPS 2024 – 5가지 핵심 요약

  1. 딥러닝의 발전과 확장
    Ilya Sutskever는 10년 전 NeurIPS 2014에서 발표했던 연구를 되돌아보며, 대규모 신경망과 데이터가 성능을 보장한다는 “스케일링 가설”이 실제로 유효했음을 강조했다. 초기에는 10층짜리 신경망을 사용하여 인간이 순간적으로 수행할 수 있는 작업을 재현하는 것을 목표로 삼았으며, 현재는 이를 넘어 초대형 신경망과 사전 학습(pre-training)이 AI 발전의 핵심이 되었다고 평가했다.
  2. Auto-Regressive 모델과 기계 번역
    그의 연구는 Auto-Regressive 모델을 통해 다음 토큰을 효과적으로 예측하면 올바른 확률 분포를 포착할 수 있다는 개념을 발전시켰다. 이를 기반으로 초기 신경망 번역 모델이 등장했으며, 이후 Transformer 모델이 발전하면서 자연어 처리의 핵심 기술이 되었다.
  3. 사전 학습의 한계와 미래 전망
    그는 사전 학습이 AI 발전을 주도했지만, 데이터 성장의 한계로 인해 궁극적으로 끝날 것이라고 예측했다. 인터넷에 존재하는 데이터는 유한하며, AI가 학습할 새로운 데이터가 부족해질 가능성이 높다. 이에 따라 “Synthetic Data(합성 데이터)”, “Inference-time Computation(추론 시 계산)”, “AI Agents(자율 에이전트)”와 같은 새로운 연구 방향이 필요하다고 제안했다.
  4. 초지능(Superintelligence)과 AI의 예측 불가능성
    현재 AI 모델은 매우 뛰어난 성능을 보이지만 여전히 불완전하며, 진정한 의미의 ‘에이전트(agentic)’가 아니다. 그러나 앞으로는 AI가 실제로 추론(reasoning)을 수행하고, 자기 인식(self-awareness)을 갖춘 시스템으로 발전할 가능성이 있다. 그는 AI가 논리적으로 사고할수록 예측이 어려워질 것이며, 결국 인간보다 더 높은 수준의 지능을 가지게 될 것이라고 주장했다.
  5. AI의 인권과 존재 방식에 대한 철학적 논의
    AI가 인간과 공존하는 방식, 나아가 AI에게 권리를 부여할 것인가에 대한 논의가 필요하다고 강조했다. 현재로서는 AI가 독립적인 존재로 성장할 것인지, 인간과 어떤 관계를 맺을 것인지 예측하기 어려우나, 사회적, 철학적, 정책적 논의가 활발하게 이루어져야 한다고 지적했다.

코멘트

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다